Homotopy Type Theory

نویسنده

  • Egbert Rijke
چکیده

Introduction 3 1 A short guide to constructive type theory 7 1.1 A dependent type over a type . . . . . . . . . . . . . . . . . . . . . . . . 8 1.1.1 Dependent products . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.1.2 Dependent sums . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.2 Defining types inductively . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Type theory with identity types 14 2.1 The inductive definition of identity types . . . . . . . . . . . . . . . . . . 15 2.2 More properties of paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.1 Preservation of composition . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Preservation of inversion . . . . . . . . . . . . . . . . . . . . . . 23 2.2.3 The dependent type Y(a) . . . . . . . . . . . . . . . . . . . . . . 23

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Seifert–van Kampen Theorem in Homotopy

Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...

متن کامل

The Seifert-van Kampen Theorem in Homotopy Type Theory

Homotopy type theory is a recent research area connecting type theory with homotopy theory by interpreting types as spaces. In particular, one can prove and mechanize type-theoretic analogues of homotopy-theoretic theorems, yielding “synthetic homotopy theory”. Here we consider the Seifert–van Kampen theorem, which characterizes the loop structure of spaces obtained by gluing. This is useful in...

متن کامل

Synthetic Homology in Homotopy Type Theory

This paper defines homology in homotopy type theory, in the process stable homotopy groups are also defined. Previous research in synthetic homotopy theory is relied on, in particular the definition of cohomology. This work lays the foundation for a computer checked construction of homology.

متن کامل

Homotopy limits in type theory

Working in homotopy type theory, we provide a systematic study of homotopy limits of diagrams over graphs, formalized in the Coq proof assistant. We discuss some of the challenges posed by this approach to formalizing homotopy-theoretic material. We also compare our constructions with the more classical approach to homotopy limits via fibration categories.

متن کامل

Modeling set theory in homotopy type theory

Homotopy type theory is a new foundation of mathematics under current development. To compare it with the existing set theoretic foundation, we formalize the cumulative hierarchy of sets in the Coq system, closely following and clarifying the informal treatment in the homotopy type theory book [17].

متن کامل

The Cayley-Dickson Construction in Homotopy Type Theory

We define in the setting of homotopy type theory an H-space structure on S3. Hence we obtain a description of the quaternionic Hopf fibration S3 ↪→ S7 S4, using only homotopy invariant tools.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012